Liquid-crystal transitions: a first-principles multiscale approach.
نویسندگان
چکیده
A rigorous theory of liquid-crystal transitions is developed starting from the Liouville equation. The starting point is an all-atom description and a set of order-parameter field variables that are shown to evolve slowly via Newton's equations. The separation of time scales between that of atomic collision or vibrations and the order-parameter fields enables the derivation of rigorous equations for stochastic order-parameter field dynamics. When the fields provide a measure of the spatial profile of the probability of molecular position, orientation, and internal structure, a theory of liquid-crystal transitions emerges. The theory uses the all-atom/continuum approach developed earlier to obtain a functional generalization of the Smoluchowski equation wherein key atomic details are embedded. The equivalent nonlocal Langevin equations are derived, and the computational aspects are discussed. The theory enables simulations that are much less computationally intensive than molecular dynamics and thus does not require oversimplification of the system's constituent components. The equations obtained do not include factors that require calibration and can thus be applicable to various phase transitions which overcomes the limitations of phenomenological field models. The relation of the theory to phenomenological descriptions of nematic and smectic phase transitions, and the possible existence of other types of transitions involving intermolecular structural parameters are discussed.
منابع مشابه
First-Principles Approach to Heat and Mass Transfer Effects in Model Catalyst Studies
We assess heat and mass transfer limitations in in situ studies of model catalysts with a first-principles based multiscale modeling approach that integrates a detailed description of the surface reaction chemistry and the macro-scale flow structures. Using the CO oxidation at RuO2(110) as a prototypical example we demonstrate that factors like a suppressed heat conduction at the backside of th...
متن کاملMultiscale simulation of flow-induced texture formation in thermotropic liquid crystals
This paper presents theory and simulation of flowinduced structures, useful to the creation of synthetic material structures and to the biomimetics of natural fibers. We present a multiscale theory and simulation of hydrodynamic texture formation to provide fundamental principles for control and optimization of structures in liquid crystal polymers. In thermotropic flow-aligning nematic polymer...
متن کاملCapillary models for liquid crystal fibers, membranes, films, and drops
This paper presents an overview of the capillary modeling science of nematic liquid crystals and its applications to the stability, structure, and shape of films, membranes, fibers, and drops. Liquid crystals are anisotropic viscoelastic materials possessing long range orientational order, and hence these models are relevant to the capillary science of anisotropic soft matter. A systematic mult...
متن کاملPrinciples for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals.
The competitive binding of a molecule forming a liquid crystal and a targeted analyte to a common molecular receptor presented at a solid surface possessing nanometer-scale topography is used to trigger an easily visualized surface-driven change in the orientation of a micrometer-thick film of liquid crystal. Diffusion of the targeted analyte from atmosphere to surface-immobilized receptor acro...
متن کاملMultiscale modeling approach for calculating grain-boundary energies from first principles
A multiscale modeling approach is proposed for calculating energies of tilt-grain boundaries in covalent materials from first principles over an entire misorientation range for given tilt axes. The method uses energies from density-functional calculations for a few key structures as input into a disclination structural-units model. This approach is demonstrated by calculating energies of ^001&-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2009